SIENZOD

C# AND PHP INTEGRATION

Kishan Jainandunsing, PhD
Senzo Labs

Introduction

A desired essential functionality of applications is client-server integration with the cloud. This can be for database
and/or compute services. Client platforms run either of the following 5 mainstream operating systems: MS
Windows, Linux, MacOS, iOS or Android. Each of these OSes support their own native programming languages and
frameworks with client-server programmatic constructs.

Similarly, there are many server-side languages and frameworks in deployment. Some of the mainstream ones
include Python, Node.JS and PHP.

Here we focus on the MS Windows .NET framework and C# language for the client side, and on PHP for the server
side. We show how to develop data exchange interfaces between a C# client and PHP server for access to
database services in the cloud. We specifically illustrate developing these interfaces using the C# WebClient and
HttpWebRequest/HttpWebResponse constructs.

WebClient

C# function — client-side:

using System.Net;

public Boolean UploadFileToDatabase(string content, string filename) {
byte[] s = Encoding.ASCIl.GetBytes(content); // convert the string formatted file content to an array of bytes
// convert byte array into a string with each byte separated by * to avoid special chars in the PHP
string byte_content = string.Join("A", s);
WebClient client = new WebClient(); // instantiate a web socket
NameValueCollection inputs = new NameValueCollection(); // instantiate an APl parameters + input container
inputs.Add("filename", filename); // add the file name parameter and value to the container

inputs.Add("content", byte_content); // add the content parameter and content to the container

string APlurl = “http://myApiUrl/myAPl.php"; // the API call URL for the web socket

byte[] isSuccess = client.UploadValues(APlurl, inputs); // execute the "POST" API call
string isDone = Encoding.UTF8.GetString(isSuccess); // convert the returned byte array to a string
if (isDone = “false") return true;

else return false;

The above C# function converts the string passed to it via content into a byte array. This byte array is then
converted into a string of bytes with the bytes separated by a ‘*’ character as the string byte_content. A new
WebClient object is instantiated as client together with its NameValueCollection as inputs to hold the file name

Copyright © 2022 Senzo Labs. All rights reserved. 1

SIENZO

and content (the latter as the byte string). The client object is then called with the APl URL and the inputs as the
parameters.

The server responds with the output of the PHP script in the API URL, which is read as a byte array by the client.
This byte array is converted to a string and tested if it is true or false.

PHP script — server-side:

<?php

Sfilename = $_POST['filename'];

Scontent = $_POST['content']; //a byte string with each byte separated by a #
Scontent_arr = explode('',Scontent); //convert into array of bytes

Sfilecontent = implode(array_map("chr", Scontent_arr)); //convert into ASCII string

Sretval = "false”;

$sql = "insert into MY_TABLE (FILE_NAME,CONTENT,TIME_STAMP)
values ('Sfilename','Sfilecontent, CURRENT_TIMESTAMP)";

if(mysqli_query(Sdb, Ssql)) Sretval = "true”;

echo Sretval;

?>

The above PHP script simply reads in the filename and the file content passed to it via POST and uploads the
content together with the file name and a date-time stamp to the database as a record in MY_TABLE.

The file content is passed to it as a string of bytes where the bytes are separated by a ‘. This string is the
converted into an array of bytes via the explode() function, which is then converted into an array of ASCII
characters via the array_map() function, and this array is then converted into an ASCII string via the implode()
function.

Copyright © 2022 Senzo Labs. All rights reserved. 2

SIENZOD

HttpWebRequest/HttpWebResponse

C# function — client-side:

using System.Net;

public string getUserInfo(string uid, string state)
{
string data = null;
// create the URL with the API call and parameters
string APIcall = "http://myApiUrl/myAPlL.php? uid=" + uid + “&state=" + state;

// make the data request via the API call
HttpWebRequest request = (HttpWebRequest)WebRequest.Create(APIcall);

myHttpWebRequest.Method = "GET"; // GET or POST, default is GET
// get the response

HttpWebResponse response = (HttpWebResponse)request.GetResponse();
if (response.StatusCode == HttpStatusCode.OK) // check if the request-response succeeded
{
Stream receiveStream = response.GetResponseStream(); // create a stream object
// create a stream buffer for the stream object to capture the response into
StreamReader readStream = (response.CharacterSet == null)?

new StreamReader(receiveStream) : new StreamReader(receiveStream,
Encoding.GetEncoding(response.CharacterSet));

data = readStream.ReadToEnd(); // read the data out of the stream buffer

readStream.Close(); //release stream resource for re-use
response.Close(); // release response resource for re-use

return data;

The above C# function forms the API call to the PHP script on the server side in customary URL format as would be
entered into a browser.

Next it instantiates a WebRequest object and binds it to the URL for the API call via the WebRequest.Create()
method. HttpWebRequest by default issue a GET API call. To issue a POST API call requires the explicit setting POST
via HttpWebRequest.Method = “POST” (in the example above: request.Method = “POST”).

Next, the GetResponse() method checks if the API call succeeded. If so, then a stream object, response, is created
for the WebRequest instance. A buffer, readStream, is created and the server-side data stream from the PHP script
is read into the string object data.

Note: It is important to properly close the StreamReader and the HttpWebResponse resources for re-use.
Otherwise the server keeps opening new sockets and new resource requests will be refused. In the above example
connections to the database by other applications will be refused.

PHP script — server-side:

<?php
Suid = $_GET['uid'];

Sstate = $_GET['state'];

Copyright © 2022 Senzo Labs. All rights reserved. 3

Ssql = "select FIRST,LAST from USERS where USER_ID = 'Suid' and STATE = 'Sstate'";
Sresult = mysqli_query(Sdb, Ssql);

Srow = mysqli_fetch_array(Sresult, MYSQLI_ASSOC);

echo json_encode(Srow);

The above PHP script simply reads the data provided to it via the parameter ‘uid’ and performs a SQL query on the
table USERS to retrieve the record which match ‘uid’ for table field USER_ID. The retrieved record is then encoded
as a JSON in string format.

The JSON string is read by the WebClient instance on the client side via the method readStream.ReadToEnd().
From here onward the data can be further parsed using string parsing/manipulating methods available for C#
string objects.

Large Data Uploads

There are key differences between the GET and POST API call methods, specifically concerning the amount of data
to upload. The GET method limits the amount of data and the limit is browser dependent. The POST method has
no such limit and is therefore the preferred choice when uploading entire file contents, for instance.

Copyright © 2022 Senzo Labs. All rights reserved. 4

